Inhibition of resting potassium conductances by long-term activation of the NO/cGMP/protein kinase G pathway: a new mechanism regulating neuronal excitability.

نویسندگان

  • David González-Forero
  • Federico Portillo
  • Laura Gómez
  • Fernando Montero
  • Sergey Kasparov
  • Bernardo Moreno-López
چکیده

Glutamate-induced excitotoxicity, the most common pathological mechanism leading to neuronal death, may occur even with normal levels of glutamate if it coincides with a persistent enhancement of neuronal excitability. Neurons expressing nitric oxide (NO) synthase (NOS-I), which is upregulated in many human chronic neurodegenerative diseases, are highly susceptible to neurodegeneration. We hypothesized that chronic production of NO in damaged neurons may increase their intrinsic excitability via modulation of resting or "leak" K+ currents. Peripheral XIIth nerve injury in adult rats induced de novo NOS-I expression and an increased incidence of low-threshold motor units, the latter being prevented by chronic inhibition of the neuronal NO/cGMP pathway. Accordingly, sustained synthesis of NO maintained an enhanced basal activity in injured motoneurons that was slowly reverted (over the course of 2-3 h) by NOS-I inhibitors. In slice preparations, persistent, but not acute, activation of the NO/cGMP pathway evoked a robust augment in motoneuron excitability independent of synaptic activity. Furthermore, chronic activation of the NO/cGMP pathway fully suppressed TWIK-related acid-sensitive K+ (TASK) currents through a protein kinase G (PKG)-dependent mechanism. Finally, we found evidence for the involvement of this long-term mechanism in regulating membrane excitability of motoneurons, because their pH-sensitive currents were drastically reduced by nerve injury. This NO/cGMP/PKG-mediated modulation of TASK conductances might represent a new pathological mechanism that leads to hyperexcitability and sensitizes neurons to excitotoxic damage. It could explain why de novo expression of NOS-I and/or its overexpression makes them susceptible to neurodegeneration under pathological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Excitatory roles of protein kinase C in striatal cholinergic interneurons.

Protein kinase C (PKC) plays critical roles in neuronal activity and is widely expressed in striatal neurons. However, it is not clear how PKC activation regulates the excitability of striatal cholinergic interneurons. In the present study, we found that PKC activation significantly inhibited A-type potassium current (I(A)), but had no effect on delayed rectifier potassium currents. Consistentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 23  شماره 

صفحات  -

تاریخ انتشار 2007